интересно
Предыдущая | Содержание | Следующая

Методы формализованного представления систем

В настоящее время известны различные классификации методов формализованного представления систем. В результате этого методы, иногда возникающие независимо, имеют в основном только терминологические различия. В этой главе приведена наиболее распространенная классификация, в которой выделяют следующие группы методов формализованного представления: аналитические, статистические, теоретико-множественные, логические, лингвистические, семиотические, графические. Общая направленность классификации следующая: каждая последующая группа методов позволяет формализовать задачу, которая не может быть решена в рамках предыдущей группы методов.

Аналитические методы

Основная терминология. Аналитическими называются методы, в которых ряд свойств многомерной, многосвязной системы отображается в n-мерном пространстве одной единственной точкой, совершающей какое-то движение (рис. 3.1).

Это отображение осуществляется либо с помощью функции f [Sx ], либо посредством оператора (функционала) F[Sx ]. Можно также две или более систем или их частей отобразить точками, и рассматривать взаимодействие этих точек, каждая из которых совершает какое-то движение, имеет свое поведение. Поведение точек и их взаимодействие описывается аналитическими закономерностями.

Основу терминологического аппарата аналитических представлений составляют понятия классической математики и некоторых новых ее разделов

(величина, функция, уравнение, система уравнений, производная, дифференциал, интеграл, функционал и т.д.).

На базе аналитических представлений возникли и развиваются математические теории различной сложности (табл. 3.1) – от аппарата классического математического анализа (методов исследования экстремумов функций, вариационного исчисления и т.д.) до таких разделов современной математики, как математическое программирование (линейное, нелинейное, динамическое и др.), теория игр (матричные игры с чистыми стратегиями, дифференциальные игры).

Применение аналитических методов. Аналитические методы применяются в тех случаях, когда свойства системы можно отобразить с помощью детерминированных величин или процессов, то есть знания о процессах и событиях в некотором интервале времени позволяют полностью определить поведение их вне этого интервала. Эти методы используются при решении задач движения и устойчивости, оптимального размещения, распределения работ и ресурсов, выбора наилучшего пути, оптимальной стратегии поведения в конфликтных ситуациях и т.п.

При практическом применении аналитических представлений для отображения сложных систем следует иметь в виду, что они требуют установления всех детерминированных взаимосвязей между учитываемыми компонентами и целями системы в виде аналитических зависимостей. Для сложных многокомпонентных, многокритериальных систем получить требуемые аналитические зависимости очень трудно. Более того, если даже это и удается, то практически невозможно доказать правомерность применения этих аналитических выражений, то есть адекватность модели рассматриваемой задаче.