интересно
Предыдущая | Содержание | Следующая

Оптимизационные и имитационные модели.

С одной стороны, теоретические научные программы пытаются распознать внутреннюю структуру, заложенную в многочисленных формах проявления реальности, сформулировать по возможности простые и обобщенные гипотезы о причинно-следственных связях и закономерностях, проверить их эмпирически и воплотить в разъяснительных и прогнозных моделях.

С другой стороны, задачей экономической науки является содействие принятию решений. Это означает, что модели принятия решения по целям и средствам должны разрабатываться как основа рекомендаций для действий по решению практических проблем. Здесь в качестве базиса незаменимы разъяснительные модели. Если мы хотим знать, как можно формировать действительность, то должно быть известно, какими свойствами она обладает.

Процесс познания в экономических науках можно представить следующим образом.

Теоретическое исследование:

выдвижение гипотезы о закономерностях типа действие – причина;

формулирование причинно-следственных связей;

эмпирическая проверка;

построение разъяснительной и прогнозной моделей. Технологическое исследование:

 

выработка рекомендации для дальнейших действий типа цели – средства их достижения;

создание модели поддержки принятия решений.

Классические модели принятия решений всегда являются оптимизационными, так как нацелены на максимизацию выгоды или прибыли. Они построены таким образом, чтобы можно было использовать оптимизационный алгоритм и получить оптимальную практическую рекомендацию. Их недостаток заключается в вынужденном упрощении действительности, поскольку определение параметров модели должно быть ориентировано на обеспечение возможности выработки решений. Поэтому полученные рекомендации часто теряют практическую ценность. Тем не менее оптимизационные модели по сравнению с интуитивными умозрительными моделями менеджеров имеют значительные преимущества:

не допускают логических ошибок, так как могут быть математически проверены на наличие нарушений логики;

являются бескомпромиссными и не содержат ничего лишнего, сводят проблему к ее сути и содействуют выражению основополагающих взаимосвязей целей и средств.

Математические модели обеспечивают систематическое осмысление проблем и позволяют одновременно учитывать все влияющие на них факторы. Вместе с тем, раскрывая все предпосылки, они становятся более уязвимыми для критики по сравнению с умозрительными моделями, где исходные пункты рассуждений формулируются их создателями.

Все же близкие к практике рекомендации могут быть получены, если при построении модели принятия решений изначально отказаться от применения оптимизационных алгоритмов и придать большее значение учету существенных структурных элементов наблюдаемого фрагмента реальности. В результате формируется имитационная модель принятия решений. Она решается не аналитически, а экспериментально или эвристически, что вследствие резкого увеличения расчетов требует использования электронно-вычислительной техники. Благодаря компьютерным технологиям неожиданно для многих возрождается и математическое модельное мышление. С помощью имитации могут быть найдены удовлетворительные решения сложных проблем, тогда как оптимизационные модели позволяют получить оптимальные решения только для проблем с простой структурой. Особенности оптимизационной и имитационной моделей показаны на рис. 5.

Широкие возможности компьютерного имитационного моделирования приводят к разработке все более сложных конструкций моделей. Это порождает дополнительные проблемы не только для программиста, но и для пользователя. Количественное определение параметров модели сталкивается со все большими трудностями. Поэтому часто приходится обращаться за недостающей информацией к экспертам, что при масштабных моделях со многими параметрами существенно усиливает спекулятивную природу практических рекомендаций.

Модели принятия решений могут лишь ограниченно отразить действительность не только из-за дефицита данных и несовершенства теорий, но прежде всего ввиду огромного разнообразия явлений и связей в реальной хозяйственной жизни.

Наконец, модели принятия решений должны постоянно подтверждать свою полезность как дополнение к чисто умозрительной модели. Это удается все чаще, но пока не всегда. Однако в принципе модели имеют все предпосылки, чтобы служить менеджерам в качестве вспомогательного средства, а не как абсолютное знание. Они способствуют лучшему пониманию реальных проблем, помогают при разработке альтернатив, упрощают их проверку и облегчают оценку интуитивных проектов и существующих моделей поведения.

У математических моделей есть и дидактическая задача. Разработчики совершенствуют свой образ мышления, так как модели позволяют знакомиться со структурой и логикой решаемых проблем и оттачивают аналитические мыслительные способности. Таким образом, интуитивная умозрительная модель получает твердую основу. При поиске проблемных решений можно научиться более целенаправленно и систематизированно продвигаться вперед и ставить под сомнение якобы надежные наблюдения.

В целом модели и теории, которые формулируются и решаются с помощью математических методов, представляют собой неотъемлемую составляющую диалога между теорией и практикой. В условиях быстро меняющихся постановок проблем, когда сегодняшние решения завтра уже не пригодны, требуются не только готовые к непосредственному использованию знания, но и умственная динамика, кругозор, компетентность, а также готовность постоянно критически оценивать свои знания.

При построении моделей исследователю необходимо последовательно пройти следующие этапы моделирования.

Постановка задачи и обоснование критерия оптимальности. На данном этапе необходимо сформулировать задачу, провести качественный и количественный анализ моделируемого объекта, оценить возможность сбора достоверной информации. Для выбора критерия оптимальности необходимо провести сравнение возможных критериев и выбрать соответствующий задачам эксперимента критерий.

Разработка структурной математической модели. На данном этапе производится выбор метода решения поставленной задачи, определяются учитываемые ограничения и участвующие в них переменные, производится унификация символики и подбираются аналоги в постановке задачи.

Сбор и обработка информации. Наиболее трудоемкий этап для большинства задач. Необходимо классифицировать и выверить собранную информацию, провести занесение ее в созданные базы данных, сформировать дубликаты баз, провести контрольное суммирование и т.д.

Построение числовой модели. Запись задачи в соответствии с принятыми обозначениями и с учетом единиц измерения для конкретной программы расчета на ЭВМ.

Решение задачи на ЭВМ. Включает в себя отладку, исправление синтаксических ошибок, контрольные прогоны задачи на известных тестовых примерах, получение исчерпывающей выходной информации на твердых носителях или в электронной форме на дискетах для чтения на своем компьютере в форме, удобной для представления отчета.

Анализ решения. Оценка адекватности полученного решения. Ретроспективные расчеты по модели, сопоставление с имеющимися результатами других исследователей, предыдущими данными, расчетами по другим моделям, экспертными оценками и т.д. Подготовка и редактирование данных для отчета.

Корректировка задачи при установлении неадекватности. Определение областей применимости модели, границ параметров по каждому эндогенному параметру и областей применимости модели по экзогенным параметрам.

Написание отчета по исследованию модели, подведение итогов, формулирование выводов и предложений, построение прогнозов развития исследуемого объекта, выявление связей между основными параметрами и результирующим показателем.