интересно
Предыдущая | Содержание | Следующая

Математическое моделирование экономической конъюнктуры, деловой активности, определение трендов, циклов и тенденций развития

Прогнозирование конъюнктуры фондового рынка. В последней четверти XX в. произошли радикальные перемены, которые дали толчок развитию новых подходов к управлению процентным риском портфеля государственных облигаций. Во-первых, во многих странах мира были организованы рынки производных финансовых инструментов, в том числе и процентных фьючерсов. Появление срочных контрактов открыло перед инвесторами новые возможности по регулированию процентного риска портфелей государственных облигаций, а также поставило перед финансовой наукой проблему разработки оптимальных моделей хеджирования. Во-вторых, в математический аппарат исследователей финансовых рынков вошли новые средства моделирования: модели авторегрессионной и обобщенной

авторегрессионной условной гетероскедастичности, нечеткие множества, многослойные самообучающиеся нейронные сети. Использование новых математических методов позволило уточнить и улучшить решения старых научных проблем, а также открыть принципиально новые направления исследования.

Другая важнейшая проблема, стоящая перед теорией управления процентным риском на современном этапе, заключается в разработке модели оптимизации рискового портфеля государственных облигаций. Классическая теория формирования рискового портфеля, разработанная Г. Марковицем для случая рынка акций, оказалась неприменимой на рынке облигаций в силу его специфических особенностей.

Как отмечают Г. Бьервэг, Г. Кауфман и А. Тоевс, а также Н. Галтекин и Р. Рогальски, параметры совместного распределения доходностей облигаций претерпевают существенные изменения по мере сокращения срока до погашения. Поскольку течение времени оказывает различное влияние на доходности различных облигаций, ковариации между ними нестабильны, и их практически невозможно оценить по данным исторических наблюдений. Поэтому стандартный метод оптимизации рискового портфеля, основанный на использовании вектора математических ожиданий и дисперсионно-ковариационной матрицы доходностей активов, на рынке облигаций использован быть не может.

Принципиально иной подход к решению проблемы предлагает

С. Рамасвами, рассматривающий формирование структуры портфеля облигаций как задачу многоцелевой оптимизации значений функций полезности, определенных для каждого из рассматриваемых сценариев перемещения временной структуры процентных ставок и заданных в форме нечетких множеств. Этот подход подразумевает, что в ходе управления процентным риском инвестор определяет контрольные цифры, которым должна соответствовать доходность портфеля при реализации различных сценариев будущих изменений рыночной конъюнктуры. Для сценариев сдвига процентных ставок, в реализации которых инвестор испытывает наибольшую степень уверенности, устанавливаются наиболее высокие тактические цели. Маловероятным сценариям сдвига процентных ставок ставятся в соответствие относительно низкие целевые уровни доходности вложений. Корректировка тактических целей, соответствующих различным возможным состояниям рыночной конъюнктуры, позволяет регулировать структуру портфеля в зависимости от изменений прогнозов инвестора и его отношения к процентному риску.

Как считает С. Рамасвами, предположения инвесторов подвержены частым и существенным изменениям. Вместе с ними меняются и функции полезности, отражающие степень удовлетворенности доходностью сформированного портфеля при реализации каждого из сценариев перемещения временной структуры процентных ставок. Уровень полезности, обеспечиваемый портфелем, зависит от степени достижения тактических целей, поставленных при его формировании. Инвестор заинтересован в достижении высокого уровня доходности при реализации прогнозируемых сценариев изменения рыночной конъюнктуры и приемлемого уровня доходности при прямо противоположном развитии событий. Сложности при определении высокого и приемлемого уровня доходности вызывают необходимость обращения к аппарату теории нечетких множеств (fuzzy sets).

задается при помощи нечеткого множества

. Тогда степень достижения всех тактических целей

инвестора выражается нечетким множеством

с функцией принадлежности

Отсюда оптимальный вариант формирования портфеля popt , позволяющий обеспечить максимальную степень достижения тактических целей инвестора, определяется условием

.

Динамика процентных ставок определяется взаимодействием целого ряда факторов: денежно-кредитной и налогово-бюджетной политики государства, состояния ликвидности банковской системы, тенденций развития инфляционных процессов, спроса на кредитные ресурсы со стороны реального сектора экономики, конъюнктуры смежных секторов финансового рынка и степени их интегрированности с сектором долговых финансовых инструментов, а также зависит от потока информационных сообщений, отражающих перспективы изменения состояния этих факторов, которые поступают рыночным агентам и определяют характер их последующих действий. Одни из факторов определяют долгосрочные тенденции изменения уровня процентных ставок, другие вызывают краткосрочные колебания, затухающие через несколько дней после первичной реакции рынка.

Исследуя реакцию процентных ставок на изменения значений макроэкономических и финансовых показателей, отражающие перемены в состоянии экономики страны и конъюнктуре финансового рынка, можно построить модель прогнозирования, способную предсказывать направление движения процентных ставок более, чем в 50 % случаев. Конечно, намерение добиться чрезвычайно высокой точности прогнозов является утопией. Набор доступных индикаторов, сколь бы широким он ни был, не может дать полностью адекватную картину комплекса сил, определяющих траекторию движения процентных ставок. Кроме того, эффективные рынки оперативно реагируют на вновь поступающую информацию, поэтому лаговые значения доступных индикаторов могут объяснить лишь часть вариации будущих изменений прогнозируемого показателя. В этой связи любая, даже самая эффективная модель прогнозирования обречена на ошибки; она не может гарантировать тесной корреляции между предсказанными и фактическими значениями объясняемой случайной переменной.

Выбор нейронных сетей в качестве инструментального средства решения задачи прогнозирования динамики процентных ставок обусловлен их уникальной способностью к аппроксимации нелинейных зависимостей. Согласно следствию из теоремы Колмогорова–Арнольда, доказанному Хехт-Нильсеном, произвольная непрерывная функция нескольких переменных может быть аппроксимирована нейронной сетью с любой наперед заданной степенью точности. Важным аргументом, послужившим основанием выбора нейронных сетей в качестве инструмента моделирования, стали успехи целого ряда исследователей в решении различных проблем анализа финансовых рынков на основе разработки нейросетевых приложений.

Обработка информации в нейронной сети осуществляется при помощи особых структурных эле- ментов – искусственных нейронов.

В нейрон поступает набор входных сигналов Xi. Каждый входной сигнал корректируется на соответствующий ему вес Wi. Потенциал нейрона рассчитывается по формуле

.

Выходной сигнал нейрона формируется в результате преобразования потенциала нелинейной передаточной функцией f (V). Обычно для этого используется сигмоидальная функция вида

Объединяя искусственные нейроны в сети, можно получить различные варианты архитектуры. Но в финансовых приложениях

чаще всего используются многослойные персептроны (multilayer perceptrons). Это нейронные сети, позволяющие моделировать зависимости между векторами входных и выходных переменных. В многослойных персептронах нейроны объединяются в слои, каждый из которых обрабатывает одинаковые входные сигналы.

Входной слой формируют независимые переменные, выходной – зависимые. Между ними располагаются скрытые слои. Выходы нейронов предыдущего слоя направляются на вход нейронов последующего слоя. База знаний нейронной сети представляет собой матрицу весов связей между нейронами.

Процесс настройки весов многослойного персептрона называется обучением. Для этого используется обучающая выборка – множество векторов значений объясняющих и объясняемых переменных. Цель обучения заключается в минимизации ошибки оценки объясняемых переменных на основе информации о значениях объясняющих переменных.

Итеративный алгоритм обучения многослойных персептронов, ставший впоследствии классиче-ским и получивший название алгоритма обратного распространения ошибки (error backpropagation), впервые был разработан Полом Вербосом в 1974 г. в рамках работы над магистерской диссертацией в Гарвардском университете. Однако работа Вербоса не была должным образом оценена и долгое время оставалась неизвестной крупнейшим ученым. В 1986 г. алгоритм обратного распространения был заново открыт и популяризирован Д. Румельхартом, Г. Хинтоном и Р. Вильямсом. С начала 1990-х гг. алгоритм обратного распространения стал активно применяться в прикладных разработках.

Алгоритм обратного распространения осуществляет минимизацию функции ошибки, определенной на множестве возможных значений весов сети. Функция ошибки обычно задается как

где 1/2 – константа, введенная для удобства при вычислении производных; i – порядковый номер выходного нейрона; Y – размер сигнала выходного нейрона; D – обучающее значение объясняемой переменной.

На каждой итерации работы алгоритма осуществляется переход к новой точке пространства весов сети. Для этого используется метод градиентного спуска, позволяющий выбрать направление, в котором скорость уменьшения значения функции ошибки является максимальной. Коррекция весов производится по правилу

– коэффициент обучения (размер шага корректировки); t – порядковый номер итерации.

Вычисление производных функции ошибки по весам сети осуществляется по формуле

где j – номер нейрона предыдущего слоя; i – номер нейрона последующего слоя; W – вес; V – потенциал; f – передаточная функция.

Производные ошибки по потенциалам вычисляются по правилу цепи, которое и обеспечивает процесс обратного распространения ошибки из нейронов выходного слоя в нейроны предыдущих слоев.

Для выходных нейронов

Для скрытых нейронов

где h – номер нейрона последующего слоя; i – номер нейрона обрабатываемого слоя.

В целях ускорения процесса обучения часто используется модификация алгоритма обратного распространения, которая обеспечивает большую стабильность процесса корректировки за счет применения оператора экспоненциального сглаживания. В этом случае уравнение обучения принимает вид

,

где µ – момент; λ – коэффициент обучения.

В ходе обучения сети многократно предъявляется один и тот же набор обучающих примеров. Чем дольше продолжается процесс обучения, тем лучше качество аппроксимации, демонстрируемое сетью при оценке значений выходных переменных по обучающей выборке. Однако через определенное число эпох обучения (под эпохой понимается однократное предъявление сети используемого набора обучающих примеров) улучшение качества аппроксимации начинает обеспечиваться не в результате правильной идентификации нелинейной зависимости между объясняющими и объясняемыми переменными, а за счет точности настройки на специфические особенности обучающих примеров. Этот феномен, получивший название переобучения (overtraining), находит отражение в падении способности сети к обобщению, т.е. к адекватной оценке значений выходных переменных по наблюдениям, не предъявленным в ходе обучения.

Для того, чтобы разрешить проблему переобучения, массив исходных данных разбивается на обучающую и тестовую выборки. Обучающая выборка используется в процессе работы алгоритма коррекции матрицы весов сети. Тестовая выборка используется для контроля состояния обученности сети. Процесс обучения прекращается, когда значение ошибки оценки значений выходных переменных по тестовой выборке достигает минимума.

В первой половине 1990-х гг. целый ряд исследователей обратился к методологии нейронных сетей как к инструментальному средству анализа финансовых рынков. Однако основные усилия обошли стороной сферу изучения процессов функционирования рынков облигаций. Большинство работ, опубликованных в этот период, посвящены прогнозированию динамики рынков акций и иностранных валют, определению рейтингов кредитоспособности заемщиков, оценке опционов.

Первая попытка разработки нейросетевой модели прогнозирования конъюнктуры рынка облигаций была предпринята В. Ченгом, Л. Вагнером и Ч. Лином. Их усилия были направлены на построение модели, прогнозирующей направление изменения цены тридцатилетней облигации Казначейства США через одну неделю. Используя в качестве объясняющих переменных спот-ставки для различных сроков вложений, индексы рынка акций, денежный агрегат M2, курсы доллара к японской иене и немецкой марке, а также цены на нефть и золото, они сконструировали нейронную сеть, оказавшуюся способной правильно определять направление изменения цены в 67 % случаев.

Результаты, полученные Ченгом, Вагнером и Лином, показали, что задача краткосрочного прогнозирования конъюнктуры стабильного высоколиквидного рынка государственных облигаций с использованием нейросетевых моделей вполне разрешима.