интересно
Предыдущая | Содержание | Следующая

Выполнение многомерного шкалирования

На рис. 21,1 показаны этапы многомерного шкалирования.

Исследователь должен тщательно сформулировать проблему многомерного шкалирования, поскольку можно использовать большое разнообразие исходных данных. Задача маркетолога — определить соответствующую форму для получения данных и выбрать метод многомерного шкалирования для их анализа. Важный аспект решения включает определение размерности для пространственной карты. Кроме того, следует обозначить оси координат на карте и интерпретировать выведенную на основе данных конфигурацию точек. И наконец, исследователь должен оценить качество полученных результатов. Мы опишем каждый из этих этапов, начав с формулирования проблемы.

Формулирование проблемы

При формулировании проблемы исследователю необходимо конкретизировать цель использования результатов многомерного шкалирования и выбрать торговые марки или другие объекты, которые предполагается проанализировать. Именно они определяют размерность шкалирования и получаемые конфигурации. Чтобы получить хорошо определяемую пространственную карту, следует включить как минимум восемь торговых марок или объектов. Включение свыше 25 торговых марок, вероятно, будет громоздким и утомит респондендов при опросе.

Очень внимательно надо подходить к выбору конкретных торговых марок или объектов. Предположим, что исследователь заинтересован узнать восприятия покупателей автомобилей. Если автомобили-люкс не включены в набор объектов, результаты могут быть искажены. В основе выбора количества торговых марок и их конкретных наименований должна лежать проблема, маркетингового исследования, теоретические предпосылки и интуиция исследователя.

Многомерное шкалирование проиллюстрировано нами с позиции получения пространственной карты для 10 известных марок зубной пасты: Aqua-Fresh, Crest, Colgate, Aim, Cleem, Macleans, Ultra Brite. Close-Up, Pepsodent и Dentagard. Перед тем как начать анализ, ответим на вопрос: как получить данные по этим маркам.

Получение исходных данных

Как показано на рис, 21.2, исходные данные, полученные от респондентов, должны быть связаны с восприятиями или предпочтениями.

Вначале мы обсудим данные, касающиеся восприятия объектов, которые могут быть прямыми или непрямыми.

Восприятие объектов: прямые подходы. При использовании прямого подхода к сбору данных о восприятии респондентов просят оценить, используя их собственный критерий, насколько похожи или не похожи между собой различные известные торговые марки. От респондентов часто требуется оценить все возможные пары известных торговых марок, рассматривая ИЛ сходство по шкале Лайксрта. Эти данные связаны с оценками респондентов о сходстве товаров. Например, оценки сходства по всем возможным парам марок зубной пасты можно получить в таком виде.

Colgate п о сравнению с Aqua-Fresh 17

Число оцениваемых пар равно ях(л — 1)/2, где п ~ число объектов. Существуют и другие методы сбора данных. Респондентов можно попросить троршжировать все возможные пары от наиболее похожих к наименее похожим. В другом методе респонденты ранжируют известные торговые марки по сравнению с определенной базовой торговой маркой. Каждая торговая марка, в свою очередь, служит такой базой.

В нашем примере использовали прямой метод. Респондентов попросили высказать свое мнение о сходстве для всех 45 (10 х 9/2) пар торговых марок зубной пасты, используя семибалльную шкалу. Данные, полученные от одного из респондентов, представлены в табл. 21.1.

Восприятие объектов: непрямые подходы. Непрямые подходы (derived approaches) к сбору данных о восприятии основаны на характеристиках объектов и требуют, чтобы респонденты оценивали объекты, исходя из их определенных характеристик, используя семантическую дифференциальную шкалу или шкалуЛайкерта.

Например, различные марки зубной пасты можно оценить на основе следующих характеристик:

Отбеливает зубы Не отбеливает зубы

Предотвращает кариес      Не предотвращает развитие кариеса

Приятный вкус    Неприятный вкус

Иногда в набор объектов также включают идеальную торговую марку. Респондентов просят оценить гипотетическую идеальную торговую марку по одному и тому же набору характеристик. Если атрибутивные рейтинги получены, го для каждой пары торговых марок выводят меру сходства (евклидоворасстояние).

Прямые методы по сравнению с непрямыми методами. Прямые методы имеют то преимущество, что исследователю не приходится определять набор явных характеристик. Респонденты оценивают сходство объектов, используя собственный критерий. К недостаткам прямого подхода можно отнести то, что на критерий влияют рассматриваемые торговые марки. Если различные известные марки автомобилей находятся в одном ценоиом диапазоне, то цена не будет важным фактором. Достаточно сложно определить перед началом анализа, надо ли и если надо, то как объединять оценки респондентов. Более того, может быть затруднительно дать название размерностям на пространственной карте.

Преимущество непрямого подхода состоит в том, что легко разделить респондентов на однородные группы в соответствии с их отношением к объекту, т.е. исходя из оценок свойств объекта. Также легко обозначить размерности на пространственной карте. Недостатком метода считается то, что исследователь должен определить все явные характеристики, а это непростая задача. На основе идентифицированных характеристик получают пространственную карту.

Прямые подходы используют чаще, чем непрямые (атрибутивные). Однако лучше всего использовать оба подхода как взаимодополняющие. Суждения респондентов о сходстве объектов, полученные прямым методом, используются для получения пространственной карты, а атрибутивные оценки — для интерпретации размерностей карты восприятий. Аналогичные процедуры используют для данных, касающихся предпочтений респондентов.

Данные, касающиеся предпочтений респондентов. С помощью данных о предпочтениях маркетолог-исследователь может увидеть порядок предпочтения объектов респондентами с точки зрения какого-либо их свойства. Обычный способ получения таких данных — ранжирование предпочтений. От респондентов требуется проранжировать торговые марки в порядке снижения их предпочтения (от наиболее предпочитаемого к наименее). Альтернативно, респондентов можно попросить выполнить попарное сравнение и указать, какую торговую марку они предпочитают в данной паре. Другой метод сбора данных о предпочтениях — получение оценок предпочтений для разных торговых марок. (Ранжирование, попарное сравнение и определение рейтинга изложены в главах 8 и 9 при обсуждении методов шкалирования). Если в основе пространственной карты лежат данные о предпочтениях, то расстояние означает различие в предпочтениях. Конфигурация, выведенная из данных о предпочтениях, может сильно отличаться от конфигурации, полученной на основе данных сходства объектов. Две торговые марки можно воспринимать как различные на карте восприятий, и как одинаковые на карте предпочтений, и наоборот. Например, зубные пасты Crest и Pepsodent могут восприниматься группой респондентов как совершенно разные, и поэтому соответствующие им точки будут далеко отстоять друг от друга на карте восприятий. Однако респонденты могут в равной степени предпочитать эти две марки зубной пасты, и поэтому на карте предпочтений точки, соответствующие маркам этих зубных паст, находятся недалеко одна от другой. Чтобы проиллюстрировать процедуру многомерного шкалирования, мы используем данные восприятий, полученные в примере с зубной пастой, а затем рассмотрим шкалирование данных о предпочтениях.