интересно
Предыдущая | Содержание | Следующая

Интерпретация факторов

Для интерпретации факторов необходимо определить переменные, которые имеют высокие значения нагрузок по одному и тому же фактору. А затем этот фактор следует проанализировать с учетом этих переменных. Другое полезное средство интерпретации — графическое изображение переменных, координатами которых служат величины факторных нагрузок. Так, в конце оси расположены переменные, которые имеют большие нагрузки только в связи с этим фактором и, следовательно, характеризуют его. Переменные в начале координат имеют небольшие нагрузки в связи с обоими факторами. Переменные, расположенные вдали от осей, связаны с обоими факторами. Если фактор нельзя четко определить с точки зрения связи с исходными переменными, то его следует пометить как неопределяемый или генеральный (общий для всех переменных).

В повернутой матрице из табл. 19.3 фактор 1 имеет высокие коэффициенты для переменных Vx (предотвращение кариеса), 1 (укрепление десен), и отрицательный коэффициент для переменной V% (предотвращение порчи зубов не считается важным при покупке зубной пасты). Следовательно, этот фактор можно назвать фактором, укрепляющим здоровье. Обратите внимание, что отрицательный коэффициент для негативной переменной Vi ведет к положительной интерпретации этого фактора, а именно, предотвращение порчи зубов будет важным при покупке зубной пасты. Фактор 2 тесно связан с переменными У, (белизна зубов), F+(свежее дыхание) и Уь (привлекательность внешнего вида зубов). Таким образом, фактор 2 можно пометить как фактор, отвечающий за внешний вид. Диаграмма факторных нагрузок на рис. 19.3 подтверждает эту интерпретацию факторов.

(обозначенные на диаграмме 1, 3 и 5 соответственно) находятся на

  (обозначенные на диаграмме 2, 4 и 6 соответственно) расположены на конце вертикальной оси (фактор 2). Можно обобщить данные, сделав вывод, что потребители, по-видимому, стремятся извлечь двойную пользу из зубной пасты: укрепить здоровье и приобрести хороший внешний вид.

Вычисление значения фактора

После интерпретации факторов необходимо вычислить их значения. Факторный анализ имеет собственную ценность. Однако если цель факторного анализа заключается в снижении исходного числа переменных до небольшого набора составных переменных (факторов), которые в дальнейшем используются в многомерном анализе, то имеет смысл вычислить для каждого респондента значение фактора. Фактор представляет собой линейную комбинацию исходных переменных. Значение для f-ro фактора можно вычислить по формуле

Обозначения в этой формуле аналогичны приведенным выше.

Веса или коэффициенты значения фактора, используемые для объединения нормированных переменных, получают из матрицы коэффициентов значения фактора. Большинство компьютерных программ позволяет вычислить значения факторов. Только в анализе главных компонент можно вычислить точные значения факторов.

Более того, в анализе главных компонент эти значения не взаимосвязаны. В анализе общих факторов оценки значений факторов получают, но нет гарантии, что факторы не будут коррелировать между собой. Значения факторов можно использовать вместо исходных переменных в последующем многомерном анализе. Например, используя матрицу коэффициентов значения фактора в табл. 19.3, можно вычислить два значения фактора для каждого респондента. Если, нормированные значения переменной умножить на соответствующий коэффициент значения фактора, то получится значение данного фактора.

Отбор переменных - заменителей

Иногда, вместо вычисления значений факторов, исследователь может выбрать переменные-заменители. Выбор переменных-заменителей (surrogate variables), заключается в выделении нескольких из исходных переменных для использования их в последующем анализе,

Это позволит выполнить последующий анализ и интерпретировать результаты с точки зрения исходных переменных, а не значения факторов. Из матрицы факторных коэффициентов можно выбрать для каждого фактора переменную с наивысшим значением нагрузки на данный фактор. Затем эту переменную используют в качестве переменной-заменителя для соответствующего фактора. Этот процесс протекает гладко, если одна из факторных нагрузок переменной значительно выше остальных. Однако сделать выбор не так легко, если нагрузки двух или больше переменных одинаково высокие. В таком случае выбор осуществляют, исходя из теоретических предпосылок. Например, теоретически предполагают, что переменная с несколько меньшей нагрузкой важнее, чем переменная с несколько большей нагрузкой. Аналогично, если переменная имеет несколько меньшую, но более точно измеренную нагрузку, то в качестве переменной-имитатора следует выбрать именно ее. В табл. 19.3 переменные Vt, Угж Vsимеют высокие нагрузки в связи с фактором 1, причем достаточно близкие по величине. Переменная Ух имеет относительно самое высокое значение и поэтому должна была бы оказаться вероятным кандидатом в переменные-имитаторы. Однако, исходя из предварительной информации, самым важным при выборе зубной пасты является ее способность предотвращать порчу зубов, и поэтому в качестве переменной-заменителя для фактора 1 должна быть выбрана переменная V5. Осуществить выбор переменной-заменителя для фактора 2 также непросто. Переменные Уг, У^ и Уь имеют сопоставимо высокие значения нагрузок на этот фактор. Если предварительная информация свидетельствует, что привлекательность внешнего вида зубов — важнейший аспект общего внешнего вида, то следует выбрать переменную К6.

Определение подгонки модели

Последняя стадия факторного анализа заключается в определении соответствия модели факторного анализа исходным данным, т.е. степени ее подгонки. Основное допущение, лежащее в основе факторного анализа, состоит в том, что наблюдаемая корреляция между переменными может быть свойственна общим факторам. Следовательно, корреляции между переменными можно вывести или воспроизвести из определенных корреляций между переменными и факторами. Изучив разности между наблюдаемыми корреляциями (данными в исходной корреляционной матрице) и вычисленными корреляциями (определенными из матрицы факторных нагрузок), можно определить соответствие модели исходным данным. Эти разности называют остатками (residuals). Если много остатков с большими значениями, то факторная модель не обеспечивает хорошее соответствие данным и требует пересмотра. Из данных табл. 19.3 видно, что только значение пяти остатков превышает 0,05, свидетельствуя тем самым о приемлемом соответствии модели данным.

Следующий пример иллюстрирует анализ главных компонент с точки зрения продвижения товара.

Для того чтобы определить, какой из восьми факторов (если такой фактор существует) предсказывает содействие продвижению товара на рынок в статистически значимой степени, выполнен пошаговый дискриминантный анализ. Значения всех восьми факторов выступают объясняющими переменными. Зависимая переменная состоит из оценки (рейтинга) розничным торговцем деловых отношений с производителем, которую разбивают на три группы, в зависимости от степени содействия в продвижении товара (низкая, средняя, высокая). Результаты дискриминантного анализа приведены в табл. 2.

В следующем разделе описан анализ общих факторов с примерами применения этого метода.

Все восемь факторов присутствуют в дискриминантных функциях. Критерии согласия указали на то, что все восемь факторов дискриминировали (различали) высокий, средний и низкий уровни содействия продажи товара, /-статистики для многомерной выборки, указывающие на степень дискриминации между каждой парой групп, были значимыми при р ( < 0,001. 65% случаев было верно отнесено к высокому, среднему и низкому уровню содейст-вия продвижению товаров. Использовался порядок введения в дискриминантный анализ. Для того чтобы определить относительную важность факторов, влияющих на содействие торговле, факторы в дискриминантную функцию вводили в порядке, указанном в j табл. 3,