интересно
Предыдущая | Содержание | Следующая

Определение метода факторного анализа

Поскольку установлено, что факторный анализ подходит для анализа данных, необходимо выбрать соответствующий метод его выполнения. Различные методы факторного анализа различают в зависимости от подходов, используемых для выделения коэффициентов значения факторов. Существует два метода — анализ главных компонент и анализ общих факторов. При анализе главных компонент (principal components analysis) учитывают всю дисперсию данных.

Диагональ корреляционной матрицы состоит из единиц, и вся дисперсия_введена в матрицу факторных нагрузок. Анализ главных компонент рекомендуется выполнять, если основная задача исследователя — определение минимального числа факторов, которые вносят максимальный вклад в дисперсию данных, чтобы в последующем использовать их в многомерном анализе. Эти факторы называют главными компонентами (principal component).

В анализе общих факторов (common factor analysis) факторы определяют только на основании общей дисперсии. Общности располагаются на диагонали корреляционной матрицы. Этот метод подходит, если основной задачей является определение латентных переменных и общей дисперсии. Этот метод также известен какразложение матрицы (principal axis factoring).

Существуют и другие методы оценки общих факторов. Они включают: метод невзвешенных наименьших квадратов, обобщенный метод наименьших квадратов, метод максимального правдоподобия, альфа-факторный метод, распознования образов. Эти методы сложнее, и их не рекомендуется использовать неопытным аналитикам.

В табл. 19.3 показано применение анализа главных компонент. В колонке "Исходные" (часть таблицы под названием "Общности") видно, что значения общностей для каждой переменной от К[ДО К равны 1, поскольку единицы введены в диагональ корреляционной матрицы. Часть табл. 19.3 под названием "Исходные собственные значения" дает собственные значения факторов, которые снижаются при переходе от первого фактора к шестому. Собственное значение фактора указывает полную дисперсию, присущую данному фактору. Полная дисперсия для всех шести факторов равна 6, т.е. числу переменных. Дисперсия, обусловленная влиянием первого фактора, равна 2,731 или 45,52% от полной дисперсии (2,731/6). Аналогично, дисперсия, обусловленная влиянием второго фактора, равна (2,218/6) или 36,97% от полной дисперсии, и два фактора вместе объясняют 82,49% полной дисперсии. Для определения числа факторов, которые необходимо использовать в анализе, существует несколько методов.