интересно
Предыдущая | Содержание | Следующая

Пошаговая регрессия

Цель пошаговой регрессии (stepwise regression) состоит в отборе из большого количества предикторов небольшой подгруппы переменных, которые вносят наибольший вклад в вариацию зависимой переменной.

В этой процедуре предикторы вводят или выводят из уравнения регрессии по очереди. Существует несколько подходов к выполнению пошаговой регрессии,

Прямое включение (прямая пошаговая регрессия). Вначале уравнение регрессии не содер жит предикторов. Они вводятся по одному, если они удовлетворяют определенному F- критерию. В основе порядка введения включаемых переменных лежит вклад перемен ной в объясняемую вариацию.

Обратная пошаговая регрессия — исключение переменной. Вначале все предикторы входят в уравнение регрессии. Затем по очереди выводятся из уравнения, исходя из их соответствия F- критерию.

Пошаговый подход. На каждой стадии прямое включение осуществляют одновременно с выводом предикторов, которые больше не удовлетворяют конкретному критерию.

Метод пошаговой регрессии не позволяет выводить оптимальные уравнения регрессии с точки зрения получения наибольшего коэффициента детерминации Я: для данного числа предикторов. Из-за корреляций между предикторами важная переменная может никогда не быть включена в уравнение, а второстепенные переменные будут введены в уравнение. Чтобы определить оптимальное уравнение регрессии, желательно просчитать варианты, в которых анализируются все возможные комбинации. Несмотря на это, пошаговая регрессия полезна в ситуации, когда размер выборки велик по сравнению с количеством предикторов, как это показано на следующем примере.