интересно
Предыдущая | Содержание | Следующая

Взаимосвязь методов

Дисперсионный и ковариационный анализ используется маркетологами для изучения различий средних значений зависимых переменных, вызванных влиянием контролируемых независимых переменных, при условии, что учтено влияние неконтролируемых независимых переменных. По сути, дисперсионный анализ (analysis of variance — ANOVA) применяют как проверку статистической значимости различий выборочных средних для двух или больше совокупностей. Обычно нулевая гипотеза утверждает, что все выборочные средние равны. Например, предположим, что исследователю интересно узнать, действительно ли люди с различным уровнем потребления сухих завтраков (едят много, средне, слабо и вообще не едят) различаются предпочтением к Total cereal, измеренным по девятибалльной шкале Лайкерта. Проверку нулевой гипотезы, утверждающей, что четыре группы потребителей не различаются предпочтением к Total, можно выполнить, используя дисперсионный анализ.

В своей простейшей форме дисперсионный анализ должен иметь зависимую переменную (предпочтение к сухому завтраку Total cereal), которая является метрической (измеренной с помощью интервальной или относительной шкалы). Кроме того, должна быть одна или больше независимых переменных (потребление продукта: сильное, среднее, слабое и отсутствие потребления). Все независимые переменные должны быть категориальными (неметрическими), их еще называют факторами (factors).

Конкретная комбинация уровней факторов называется факторным экспериментом {условиями испытаний) (treatment).

Однофакторный дисперсионный анализ (one-way analysis of variance) включает только одну категориальную переменную или единственный фактор.

Различия в предпочтениях потребителей с сильным, средним, слабым и нулевым уровнями потребления можно изучить с помощью однофакторного дисперсионного анализа, в котором факторный эксперимент представлен определенным уровнем фактора (пользователи со средним уровнем потребления как раз и составляют факторный эксперимент). Если существует два или больше факторов, то анализ называют многофакторным дисперсионным анализом (n-way analysis of variance). (Если в дополнение к фактору использования продукта исследователь также хочет узнать отношение к Totalcerecl потребителей с разным уровнем лояльности (новый фактор), то для этого подходит многофакторный дисперсионный анализ).

Если набор независимых переменных состоит из категориальных и метрических переменных, то их изучают методом ковариационного анализа (analysis ofcovariance — ANCOVA).

Например, ковариационный анализ необходим, если исследователь хочет изучить Предпочтения пользователей в группах с различным уровнем потребления и уровнем лояльности, приняв во внимание отношение респондентов к составу продуктов питания и к значению завтрака, как способу приема пищи. Две последние переменные измеряются по девятибалльной шкале Лайкерта. В этом случае категориальные независимые переменные (потребление продукта и лояльность к торговой марке) по-прежнему называются факторами, в то время как метрические независимые переменные (отношение к составу продуктов питания и значение, придаваемое завтраку) — ковариатами (covariates).

Взаимосвязь дисперсионного анализа с /-критерием и другими методами анализа, такими как регрессионный анализ, показана на рис. 16.1.

Во всех этих методах анализа используется метрическая зависимая переменная. Дисперсионный и ковариационный анализ может включать несколько независимых переменных (степень использования продукта, лояльность к торговой марке, отношение, важность). Более того, одна из независимых переменных должна быть категориальной и категориальные переменные могут иметь больше двух уровней (в нашем примере степень использования продукта имеет четыре уровня). С другой стороны, /-критерий предназначен для использования в случае с единственной бинарной независимой переменной. Например, различие в предпочтениях товара у лояльных и нелояльных респондентов можно узнать, выполнив проверку с помощью /-критерия. Регрессионный анализ, подобный дисперсионному и ковариационному, также может включать несколько независимых переменных. Однако все независимые переменные, в основном, измеряются интервальной шкалой, хотя бинарные или категориальные переменные могут приспосабливаться к анализу за счет введения фиктивных (dummy) переменных. Например, связь между предпочтением продукта Total cereal, отношением к составу продукта и важностью завтрака можно изучить с помощья. регрессионного анализа.