интересно
Предыдущая | Содержание | Следующая

Практика проведения кросс-табуляции

На практике проведение кросс-табуляции полезно вести по следующим этапам.

Проверьте нулевую гипотезу о том, что отсутствует связь между переменными, используя критерий хи-квадрат. Если вам не удалось отклонить нулевую гипотезу, то связь между переменными отсутствует.

Если нулевая гипотеза И,, отклонена, то определите тесноту связи, используя подходящие статистики (фи-коэффициент, коэффициент сопряженности, К-коэффициент Крамера, коэффициент "лямбда" или другие статистики).

Если нулевая гипотеза //„ отклонена, то поясните характер связи, вычислив проценты в направлении независимой переменной через зависимую переменную.

Используйте в качестве проверяемых статистик тау Ь, та с или "гамму" для обработки порядковых, а не номинальных переменных. Если нулевая гипотеза Н0 отклонена, то определите тесноту связи, используя величину и направление связи, а также учитывая знак проверяемой статистики.

Проверка гипотез о различиях

В предыдущем разделе проверялись гипотезы о связях между переменными. Теперь мы сделаем акцент на проверке гипотез о различиях. Классификация процедур проверки гипотез о различиях представлена на рис. 15.9.

Методы, показанные на рис. 15,9, согласуются с классификацией одномерных методов, представленных на рис. 14.6. Главное различие в том, что методы на рис. 14.6 также применимы к нескольким выборкам (больше двух) и таким образом связаны с однофакторным дисперсионным анализом (ANOVA) и ранговым дисперсионным анализом Краскера—Уоллеса (K-W ANOVA), тогда как методы на рис, 15.9 ограничены двумя выборками. Процедуры проверки гипотез можно в общем виде классифицировать на параметрические и непараметрические, исходя из шкалы измерения переменных. Параметрические методы проверки гипотез (parametric tests) предполагают, что изучаемые переменные измерены с помощью интервальной шкалы.

Непараметрические методы проверки гипотез (nonparametric tests) предполагают, что переменные измерены с помощью номинальной или порядковой шкал.

Дальнейшая классификация проводится в зависимости от количества выборок: одна, две или больше. Как объяснялось в главе 14, число выборок определяют, исходя из метода дальнейшей обработки данных для анализа, а не из того, как были собраны данные. Выборки независимы в том случае, если взяты случайным образом из различных генеральных совокупностей. Для анализа данные, принадлежащие различным группам респондентов, например мужчинам и женщинам, обычно обрабатывают как независимые выборки. С другой стороны, выборки являются парными (связанными), когда данные двух выборок имеют отношение к одной и той же группе респондентов.

Наиболее популярный параметрический критерий для проверки гипотез о равенстве средних заключается в расчете значений /-статистики. Проверка на основе /-критерия выполняется относительно среднего значения одной или двух выборок. В случае двух выборок они могут быть независимыми или парными. Непараметрические методы проверки, основанные на наблюдениях, взятых из одной выборки, включают критерий Колмогорова-Смирнова, критерий хи-квадрат, критерий серий и биномиальный критерий. В случае двух независимых выборок для проверки гипотез относительно среднего значения используют (/-Критерий Манна—Уитни (Mann—Whitney), медианный критерий и двухвыборочный критерий Колмогорова—Смирнова. Эти критерии — непараметрические копии /-критерия для двух групп. Для парных выборок непараметрические критерии включают критерий Вилкоксона парных сравнений и критерий знаков. Эти тесты — копии парного ! -критерия. Как параметрическими, так и непараметрическими методами оценивают гипотезы, относящиеся к более, чем двум выборкам. Эти критерии рассматриваются в следующих главах.