интересно
Предыдущая | Содержание | Следующая

Две переменные

Кросс-табуляцию с двумя переменными можно рассматривать как двумерную. Сначала рассмотрим кросс-табуляцию данных, касающихся пола и использования Internet, представленную в табл. 15.3. Связано ли использование Internet с полом? Это можно выяснить из табл. 15.3. Мы видим, что непропорционально большое количество респондентов, проводя-ших много времени в Internet, мужчины. Лучше понять этот вопрос поможет процентное вычисление.

Исходя из того, что обе переменные подвергаются процедуре кросс-табуляции, мы можем посчитать проценты применительно к колонке (табл. 15.4) либо к строке (табл, 15.5).

Какая из этих двух таблиц полезнее? Ответ на данный вопрос зависит от того, какая переменная рассматривается как независимая, а какая как зависимая. Общее правило, которое необходимо соблюдать, гласит —проценты необходимо вычислять для каждой категории независимой переменной (так, чтобы суммарное значение категорий зависимой переменной применительно к каждой категории независимой переменной давало 100%). В нашем анализе пол можно рассматривать как независимую переменную, использование Internet — как зависимую, а правильный способ вычисления процентов показан в табл. 15.4. Заметим, что мужчины больше используют Internet, чем женщины. Это видно из того, что 66,7%, активно пользующихся Internet, составляют мужчины, тогда как на долю женщин в этой категории приходится всего лишь 33,3%.

Вычисление процентов в направлении зависимой переменной через независимую, как показано в табл. 15.5, бессмысленно. Табл. 15.5 подразумевает, что интенсивное пользование Internet — причина того, что такими людьми являются мужчины. Это последнее утверждение неправдоподобно. Однако, возможно, что связь между пользованием Internet и полом человека опосредована третьей переменной, например возрастом или доходом. Поэтому необходимо проверить влияние третьей переменной.

Три переменные

Часто введение третьей переменной позволяет маркетологу четче уяснить природу исходной связи между двумя переменными. Как показано на рис. 15.7, третья переменная может привести к четырем возможностям.

Уточнить связь, наблюдаемую между двумя исходными переменными.

Указать на отсутствие связи между двумя переменными, хотя первоначально связь наблюдалась, Другими словами, третья переменная покажет, что исходная связь между двумя переменными была ложной.

Показать некоторую связь между двумя переменными, хотя первоначально она не наблюдалась. В этом случае третья переменная показывает скрытую связь между первыми двумя переменными.

Не показать никаких изменений в первоначальной связи.

Эти возможности объясняются на примерах, в основе которых лежит выборка в тысячу респондентов.

Уточнение исходной связи. В результате изучения связи между покупкой модной одежды и семейным положением получены данные, приведенные в табл. 15.6.

Респондентов поделили на две категории покупателей модной одежды: много покупающие и мало покупающие. Семейное положение тоже имело две категории: женат (замужем) либо не женат (не замужем). Как видно из табл. 15.6, в категорию лиц, покупающих много модной одежды, попали 52% несемейных респондентов и только 31% семейных. Перед тем как заключить, что респонденты, не имеющие семьи, покупают больше модной одежды, чем имеющие семью, в анализ была введена третья переменная — пол.

Пол респондентов вводился в качестве третьей переменной на основании результатов предшествующего маркетингового исследования. Связь между покупкой модной одежды и семейным положением пересмотрена в свете третьей переменной, как показано в табл. 15.7. Что касается женщин, то из них 60% незамужних попали в категорию покупающих больше модной одежды по сравнению с 25% замужних женщин, С другой стороны, для мужчин эта разница в процентах не так велика: 40% холостых и 35% женатых попали в категорию покупателей, приобретающих много модной одежды. Следовательно, третья переменная, уточнила связь между семейным положением и покупкой модной одежды (начальными переменными). Вероятность попадания в категорию покупателей, приобретающих много модной одежды, выше для несемейных респондентов по сравнению с семейными, причем она выше для женшин.

Исходная связь между двумя переменными ложна. Маркетолог проводит исследование для рекламного агентства, разрабатывающего рекламу для автомобилей стоимостью свыше 30 тысяч долларов. Он попытался проанализировать факторы, влияющие на владение дорогими автомобилями (табл. 15.8).

Из таблицы видно, что 32% выпускников колледжа имеют дорогой автомобиль, в то время как среди не окончивших колледж дорогим автомобилем владеют только 21%. Исследователь убежден, что уровень образования влияет на приобретение дорогого автомобиля. Решив, что на его покупку влияет и доход, исследователь перепроверил связь между образованием и наличием дорогого автомобиля в свете уровня доходов. Результаты приведены в табл. 15.9.

Заметим, что процент тех, кто имеют дорогой автомобиль, среди окончивших колледж или не окончивших его одинаков для каждой из групп, разбитых по доходу. Если данные по группам с высокими и низкими доходами проверить отдельно, то связь между образованием и наличием дорогого автомобиля исчезает, а это значит, что первоначально наблюдаемая связь между этими двумя переменными былаложной.

Третья переменная показывает подавленную связь между первыми двумя переменными. Маркетолог, исследующий сферу туристических поездок за границу, предположил, что на желание путешествовать влияет возраст. Однако таблица сопряженности двух переменных (табл. 15.10) не выявила никакой связи. Когда в качестве третьей переменной ввели пол, полу-чилиданные, представленные в табл. 15.11.

Среди мужчин до 45 лет 60% изъявили желание отправиться в турпоездку заграницу, а после 45 лет — всего лишь 40%. Обратная ситуация наблюдалась для женщин: в возрасте до 45 лет желающих отправиться посмотреть мир оказалось 35%, а после 45 лет — 65%. Поскольку связь между желанием путешествовать и возрастом различна для мужчин и женшин и с противоположной направленностью, связь между этими двумя переменными была скрыта, пока данные не учитывали переменную "пол", как это сделано в табл. 15.10. Но при проверке влияния пола, как показано в табл. 15.11, проигнорированная связь между желанием путешествовать и возрастом была обнаружена для отдельных категорий: мужчин и женшин.

Никаких изменении в первоначальной связи. В некоторых случаях третья переменная не изменяет первоначально наблюдаемую связь, независимо оттого, были ли исходные переменные взаимосвязаны. Это означает, что третья переменная никак не влияет на связь между двумя первыми переменными. Рассмотрим кросс-табуляцию двух переменных: размер семьи и частоту посещения ресторанов быстрого питания, представленную в табл. 15.12.

Респондентов разделили (используя медиану) на две равные по размеру категории по 500 респондентов в каждой: небольшая и большая семья, Не наблюдалось никакой связи, Затем по этому же принципу респондентов разделили на категории: семьи с большим и малым доходом. При введении в анализ третьей переменной получили табл. 15.13. И снова не наблюдалось никакой связи.

Общие комментарии по поводу кросс-табуляции

Можно построить таблицу сопряженности больше, чем для трех переменных, но интерпретация полученных результатов достаточно сложная. Кроме того, поскольку число ячеек многократно увеличится, проблематично оставить необходимое количество респондентов или случаев в каждой ячейке. Как правило, чтобы вычислить статистику в каждой ячейке, должно быть, по крайней мере, пять наблюдений. Таким образом, кросс-табуляция — неэффективный способ проверки связей для ситуаций с несколькими переменными, она рассматривает просто связь между переменными, а не причинность. Чтобы изучить причинно-следственную связь, необходимо провести соответствующее причинно-следственное исследование (см. главу 7).