интересно
Предыдущая | Содержание | Следующая

Нечетко-множественная оценка доходности и риска индексов

Традиционной вероятностной моделью поведения индекса является модель винеровского случайного процесса c постоянными параметрами m (коэффициент сноса, по смыслу – предельная курсовая доходность) и s (коэффикциент диффузии, по смыслу – стандартное уклонение от среднего значения предельной доходности). Аналитическое описание винеровского процесса [115]:

где z(t) – стандартный винеровский процесс (броуновское движение, случайное блуждание) с коэффициентом сноса 0 и коэффициентом диффузии 1.

В приращениях запись (3.1) приобретает вид

Из (3.1) – (3.2) следует, что доходность, как ее понимает модель винеровского процесса, имеет нормальное распределение с матожиданием m и среднеквадратическим отклонением s. Обозначим плотность этого распределения j(r,m,s), где r – расчетное значение доходности.

Однако, если пронаблюдать фактическое ценовое поведение индексов, то мы увидим, что текущая доходность индексов не колеблется вокруг постоянной случайной величины, но образует динамический тренд. Очень характерным для анализа в этом смысле является интервал 1998-2002 г.г., когда тренд доходности поменял знак, и винеровская модель оказалась абсолютно неадекватной.

Чтобы повысить достоверность оценки доходности и риска индексов, необходимо отказаться от винеровской модели и перейти к нечеткой модели финальной (конечной) доходности следующего вида:

где t – текущее время, t0 – начальный отсчет времени, S(t) - прогнозный уровень индекса – треугольная нечеткая функция, r(t) – расчетный коридор доходности индекса - треугольная нечеткая функция. В каждый момент t случайная величина r(t) имеет нормальное распределение j(r,m,s) с треугольно-нечеткими параметрами m,s. Подробно такое нормальное распределение описано в Приложении 1 к настоящей монографии.

Оценим треугольные параметры m,s по принципу максимума правдобия. Пусть у нас есть квазистатистика доходностей (r1, …rN) мощности N и соответствующая ей гистограмма (n1,...,nM) мощности M. Для этой квазистатистики мы подбираем двупараметрическое нормальное распределение, руководствуясь критерием правдоподобия

где ri - отвечающее i-му столбцу гистограммы расчетное значение доходности, Dr -уровень дискретизации гистограммы.

Задача (3.4) - это задача нелинейной оптимизации, которое имеет решение

причем ц 0 , а0 - аргументы максимума F(n,a), представляющие собой контрольную точку.

Выберем уровень отсечения F1 < F0 и признаем все вероятностные гипотезы правдоподобными, если соответствующий критерий правдоподобия лежит в диапазоне от F1 до F0. Тогда всем правдоподобным вероятностным гипотезам отвечает множество векторов К, которое в двумерном фазовом пространстве представляет собой выпуклую область с нелинейными границами.

Впишем в эту область прямоугольник максимальной площади, грани которого сориентированы параллельно фазовым осям. Тогда этот прямоугольник представляет собой усечение К и может быть описан набором интервальных диапазонов по каждой компоненте

Назовем К зоной предельного правдоподобия. Разумеется, контрольная точка попадает в эту зону, то есть выполняется

что вытекает из унимодальности и гладкости функции правдоподобия. Тогда мы можем рассматривать числа ц = (цmin, щ0, Цmax), a = (cmin, a0, amax) как треугольные нечеткие параметры плотности распределения с р( .), которая и сама в этом случае имеет вид нечеткой функции.

Рассмотрим пример. Пусть по результатам наблюдений за индексом сформирована квазистатистика мощностью N=100 отсчетов, представленная в диапазоне -5 + +15 процентов годовых следующей гистограммой c уровнем дискретизации 2% годовых мощностью M=10 интервалов (таблица 3.2):

Оценить параметры нормального распределения доходности.

Решение. Решением задачи нелинейной оптимизации (3.4) является F0 = -0.0022 при m0 = 7.55% годовых , s0 = 2.95% годовых. Зададимся уровнем отсечения F1 = -0.004. В таблицу 3.3 сведены значения критерия правдоподобия, и в ней курсивом выделены значения, удовлетворяющие выбранному нами критерию правдоподобия.

Видно, что при данном уровне дискретизации параметров можно построить зону предельного правдоподобия двумя путями:

причем контрольная точка попадает в оба эти прямоугольника. Точное же решение этой задачи, разумеется, единственное:

Теперь, когда мы научились получать достоверные оценки доходности и риска фондовых индексов, можно переходить к решению задачи оптимизации портфеля на модельных активах.