интересно
Предыдущая | Содержание | Следующая

Предпосылки для построения метода скоринга

Как и в [64], необходимо предварить описание метода скоринга качественной экспертной моделью российского рынка, на основании которой будет совершаться выбор показателей для оценки и их ранжирование.

В первую очередь надо отметить, что, как и в случае американского рынка акций, ключевым фундаментальным индикатором оцененности акции выступает отношение цены акции к доходам по ней в годовом выражении (P/E), в долях. При этом, для повышения надежности оценки, здесь и далее используются интегральные средневзвешенные оценки факторов (ТТМ).

Во вторую очередь следует рассматривать факторы, свидетельствующие о риске дефолта эмитента. Мы для оценки выбираем два фактора: капитализацию эмитента (Cap) в миллионах долларах США и обеспеченность оборотных активов собственными средствами предприятия (Liquidity), в долях. Мы не оцениваем надежность эмитентов по факторам финансовой автономии, т.к. считаем эту оценку малоинформативной, в силу особенностей учета внеоборотных активов на балансе предприятия и существующих методов их переоценки. Именно чистый оборотный капитал (ЧОК), участвующий в расчетах коэффициента обеспеченности, представляется нам наиболее представительным фактором для анализа. Отрицательное значение ЧОК свидетельствует о повышенном риске эмитента не справиться со своими текушими финансовыми обязательствами, что чревато невыплатой дивидендов, потерей управляемости, и, наконец, повышает риск банкротства.

В третью очередь мы берем в рассмотрение факторы, соотносящие цену акций и продажи, а также собственный капитал, в расчете на одну акцию (факторы P/S и P/B соответственно, в долях). Эти факторы, хорошо известные в мировой практике финансового анализа, оценивают, насколько эффективно работает предприятие, с одной стороны, и насколько раздут его капитал по отношению к стоимости собственных сре дств пр едприятия, с другой стороны. На этом же шаге анализа мы рассматриваем факторы рентабельности предприятия – рентабельность активов, собственного капитала и инвестированного капиталов (факторы ROA, ROE и ROIC соответственно, в процентах годовых).

Далее мы выстраиваем систему предпочтения одних факторов другим, исходя из нашего опыта скоринга акций. Мне представляется, что шкала предпочтений факторов должна иметь следующий вид:

Ожидаемая доходность вложений в акции ý Надежность эмитента ý Текущая эффективность работы эмитента.(2.9)

В такой системе предпочтений учтено то, что вложения в российские акции с мировой точки зрения – это заведомо рискованные вложения, и риск дефолта (фактор надежности) большей частью учтен инвесторами уже на страновом уровне (на шаге выбора страны для инвестиций) и волнует инвесторов во вторую очередь. Прежде всего инвестор рассчитывает на спекулятивный рост курсовой цены акций, на их перманентную недооцененность. И с этой точки зрения фактор P/E является главным в анализе.

Тем не менее, фактор надежности не сбрасывается со счетов вовсе. Переходя от странового риска к частному риску дефолта эмитента, инвестор предпочтет иметь дело с компаниями, которые находятся на подъеме и занимают ощутимую долю на рынке. Отсюда роль капитализации и ликвидности в оценке.

Инвестор также понимает, что в долгосрочной перспективе курсовой рост может быть обеспечен только успешной устойчивой работой предприятия. И с этой точки зрения факторы эффективности занимают в анализе третье место.

С точки зрения факторов оценки система предпочтений (2.9) приобретает вид:

Информации, заключенной в (2.10), достаточно нам для того, чтобы перейти непосредственно к скорингу акций.

Исходные данные для скоринга

В таблицу П3.1 Приложения 3 к монографии сведены значения анализируемых факторов по состоянию на 11 февраля 2002 года.

Методика скоринга

Построение гистограмм распределений факторов

Построенные на основании данных таблицы П3.1 гистограммы распределения факторов скоринга представлены на рис П3.1– П3.8.

Построенные гистограммы не отображают статистику факторов, в силу существенной неоднороднорсти их случайных значений, а могут быть интерпретированы как квазистатистика. То есть мы не настаиваем на однородности собранных данных, но указываем на то, что в первом приближении, на уровне страны, эти данные могут рассматриваться и анализироваться совместно, безотносительно отраслевой классификации эмитентов.